Sub-optimality of some continuous shrinkage priors
نویسندگان
چکیده
منابع مشابه
Shrinkage Priors for Bayesian Prediction
We investigate shrinkage priors for constructing Bayesian predictive distributions. It is shown that there exist shrinkage predictive distributions asymptotically dominating Bayesian predictive distributions based on the Jeffreys prior or other vague priors if the model manifold satisfies some differential geometric conditions. Kullback– Leibler divergence from the true distribution to a predic...
متن کاملAdaptive Bayesian Shrinkage Estimation Using Log-Scale Shrinkage Priors
Global-local shrinkage hierarchies are an important, recent innovation in Bayesian estimation of regression models. In this paper we propose to use log-scale distributions as a basis for generating familes of flexible prior distributions for the local shrinkage hyperparameters within such hierarchies. An important property of the log-scale priors is that by varying the scale parameter one may v...
متن کاملGeometric Shrinkage Priors for Kählerian Signal Filters
We construct geometric shrinkage priors for Kählerian signal filters. Based on the characteristics of Kähler manifold, an algorithm for finding the superharmonic priors is introduced. The algorithm is efficient and robust to obtain the Komaki priors. Several ansätze for the priors are also suggested. In particular, the ansätze related to Kähler potential are geometrically intrinsic priors to th...
متن کاملHierarchical priors for Bayesian CART shrinkage
The Bayesian CART (classiication and regression tree) approach proposed by Chipman, George and McCulloch (1998) entails putting a prior distribution on the set of all CART models and then using stochastic search to select a model. The main thrust of this paper is to propose a new class of hierarchical priors which enhance the potential of this Bayesian approach. These priors indicate a preferen...
متن کاملHeavy-Tailed Process Priors for Selective Shrinkage
Heavy-tailed distributions are often used to enhance the robustness of regression and classification methods to outliers in output space. Often, however, we are confronted with “outliers” in input space, which are isolated observations in sparsely populated regions. We show that heavy-tailed stochastic processes (which we construct from Gaussian processes via a copula), can be used to improve r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 2016
ISSN: 0304-4149
DOI: 10.1016/j.spa.2016.08.007